Desorption From Interstellar Ices
نویسندگان
چکیده
The desorption of molecular species from ice mantles back into the gas phase in molecular clouds results from a variety of very poorly understood processes. We have investigated three mechanisms; desorption resulting from H2 formation on grains, direct cosmic ray heating and cosmic ray induced photodesorption. Whilst qualitative differences exist between these processes (essentially deriving from the assumptions concerning the species-selectivity of the desorption and the assumed threshold adsorption energies, Et) all three processes are found to be potentially very significant in dark cloud conditions. It is therefore important that all three mechanisms should be considered in studies of molecular clouds in which freeze-out and desorption are believed to be important. Employing a chemical model of a typical static molecular core and using likely estimates for the quantum yields of the three processes we find that desorption by H2 formation probably dominates over the other two mechanisms. However, the physics of the desorption processes and the nature of the dust grains and ice mantles are very poorly constrained. We therefore conclude that the best approach is to set empirical constraints on the desorption, based on observed molecular depletions rather than try to establish the desorption efficiencies from purely theoretical considerations. Applying this method to one such object (L1689B) yields upper limits to the desorption efficiencies that are consistent with our understanding of these mechanisms.
منابع مشابه
Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces.
More than 140 different molecules have been identified in the interstellar medium (ISM) to date. Dust grain particles are also found in the ISM, and some of these molecules freeze out at the cold temperatures (10-20 K) to form molecular ices. Understanding the adsorption and desorption of these ices is crucially important in understanding the processes that lead to star and planet formation, an...
متن کاملLaboratory studies of the spectroscopy and physical behaviour of CO-containing interstellar ices
Context. High resolution observations of the 4.67 μm stretching vibration of solid CO towards low mass star forming regions show remarkably consistent trends in the component features of the CO ice band. Key questions arising from this analysis point towards the need for a chemical explanation of these phenomena. Aims. To understand and interpret observations of CO ice features by comparing the...
متن کاملGlycolaldehyde, methyl formate and acetic acid adsorption and thermal desorption from interstellar ices
Wehave undertaken a detailed investigation of the adsorption, desorption and thermal processing of the astrobiologically significant isomers glycolaldehyde, acetic acid andmethyl formate. Here, we present the results of laboratory infrared and temperature programmed desorption (TPD) studies of the three isomers from model interstellar ices adsorbed on a carbonaceous dust grain analogue surface....
متن کاملThermally induced mixing of water dominated interstellar ices.
Despite considerable attention in the literature being given to the desorption behaviour of smaller volatiles, the thermal properties of complex organics, such as ethanol (C(2)H(5)OH), which are predicted to be formed within interstellar ices, have yet to be characterized. With this in mind, reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have bee...
متن کاملFundamental data on the desorption of pure interstellar ices
The desorption of molecular ices from grain surfaces is important in a number of astrophysical environments including dense molecular clouds, cometary nuclei and the surfaces and atmospheres of some planets. With this in mind, we have performed a detailed investigation of the desorption of pure water, pure methanol and pure ammonia ices from a model dust-grain surface. We have used these result...
متن کاملTrapping and desorption of complex organic molecules in water at 20 K.
The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008